분자유전학실험실 (단국대학교 분자생물학과)



 이성욱 ( 2014-06-21 13:39:25 , Hit : 1855
 Perspective: The age of the phage


Shigenobu Matsuzaki,1, Jumpei Uchiyama,1, Iyo Takemura-Uchiyama1, & Masanori Daibata1,
Affiliations Journal name:
Nature
Volume:
509,
Page:
S9
Date published:
(01 May 2014)
DOI:
doi:10.1038/509S9a
Published online 30 April 2014
Article tools

PDF
Perspective: The age of the phage

Download as PDF (694 KB) View interactive PDF in ReadCube
Citation
Reprints
Rights & permissions
Article metrics

It's time to use viruses that kill bacteria again, say Shigenobu Matsuzaki, Jumpei Uchiyama, Iyo Takemura-Uchiyama and Masanori Daibata.

Subject terms:Antibiotics• Antibiotics• Antimicrobials• Bacterial infection
Bacteriophages, or simply 'phages', are viruses that infect and in some cases destroy bacterial cells. Scientists started using phages as a medical therapy in the early 1900s. However, the technique fell out of favour in the 1940s, largely due to the introduction of antibiotics, which provided protection against a broader range of infections.

But as the problem of antibiotic resistance increases, more countries are revisiting phage therapy. Last year, for instance, the European Union (EU) funded a project called Phagoburn to explore the use of phage therapy to treat burn wounds infected with bacteria. Phagoburn involves institutions and hospitals in Belgium, France and Switzerland. The EU hopes the results from this project can be used, the project's website says, “for an optimization of current regulatory guidelines in phage therapy”, because no new forms have been approved recently.

Countries that aim to introduce phage therapy will need to prepare their own guidelines for approving it, including methods for phage selection, preparation and administration. But recent advances in phage therapy suggest that such regulatory efforts would bring big rewards in treating bacterial infections.

Avoiding immunity
“Environments such as sea water, fresh water and soil all contain millions of phage species.”
Phages are a natural part of the microbial ecosystem. Environments such as sea water, fresh water and soil all contain millions of phage species. Different phage species are specific to particular bacterial species, and they can infect bacteria without harming animal or plant cells.

When faced with a bacterial infection, scientists first isolate candidate phages from the environment. The bacteria can be treated with a sample of water that naturally contains phages. If the bacteria die, the sample can be centrifuged, leaving the phages at the top to be collected and tested to see which ones killed the bacteria. Either the phage or its products, such as bacteriolytic enzymes called endolysins, can then be used as antibacterial agents in pills and ointments, often requiring just a single dose.

However, despite early success, phage therapy was largely abandoned when antibiotics came along, and is used today in only a few countries, including Russia, Georgia and Poland. Phage therapy declined in part because it focuses on treating specific infections, rather than on treating a range of bacteria. Some studies concluded that it failed because highly specific phages were simply tested against the wrong bacteria.

Yet phage therapy has several advantages over using antibiotics. First, because the bactericidal mechanism is completely different from the way antibiotics work, it is effective against multidrug-resistant bacterial infections. Second, phage therapy is highly species specific, meaning it is unlikely to change the bacterial flora of a patient and cause gastrointestinal side effects. Third, the propensity of phages to proliferate allows the use of very low doses.

Opponents of phage therapy often raise two potential problems: the appearance of phage-resistant mutant bacterial strains, and adverse reactions caused by the host's immune system against the phage. Modern techniques make it possible to address both of these concerns, however. First, using a cocktail of several different phages, or the advance preparation of mutant phages, overcomes any issue of bacterial resistance. Second, to stop phage therapy activating someone's immune system, a medical treatment can use phages with innate characteristics that are unlikely to elicit an immune response, use mutant phages that are not recognized by the immune system, or use some combination of the two. If a phage does somehow turn on the immune system, it can be treated with polyethylene glycol, for example, which will reduce the immune response.

Some phages can also produce toxins, but there is a way of resolving that problem too. Modern high-throughput techniques have moved phage therapy beyond screening water samples for potential treatments. Next-generation sequencing, for example, allows genomic DNA sequences from multiple phages to be analysed simultaneously. This makes it easier to detect suitable candidates for phage therapy that lack harmful genes, such as those that produce toxins or drug resistance.

The silk road
In addition, antibacterial research, like all drug discovery, benefits from lower-cost approaches. Modern drug development programmes often include studies on rodents, which require extensive experimental facilities and carry high experimental costs. For phage therapy, a less expensive invertebrate-based platform could be used. Kazuhisa Sekimizu and his colleagues at the University of Tokyo, for example, showed that silkworm larvae and mice provide comparable results regarding the effectiveness of experimental antibiotic therapies1, 2.

We have used silkworm larvae to test phage therapy against Staphylococcus aureus infections. Using two new phages to infect the bacterium, we found no adverse effects on the silkworm, but the phages did destroy the bacteria cells3. Our results using silkworm larvae were similar to those using these phages against S. aureus infections in mice.

Although we continue to obtain benefits from antibiotics, as we did in the twentieth century, the problems of antibiotic-resistant bacteria are set to increase, making it unlikely that antibiotics will remain effective forever. The latest techniques make it easier and faster to find phages to fight specific bacteria, and with less risk of resistance than using antibiotics. Phage therapy may be from a bygone era, but these advantages make today the age of the phage.

ReferencesReferences• Author information Hamamoto, H. et al. Antimicrob. Agents Chemother. 48, 774–779 (2004).
CAS PubMed Article Show contextHamamoto, H. et al. Yakugaku Zasshi 132, 79–84 (2012).
CAS PubMed Article Show contextTakemura-Uchiyama, I. et al. FEMS Microbiol. Lett. 347, 52–60. (2013).
CAS PubMed Article Show contextDownload references

Author informationReferences• Author information Affiliations
Shigenobu Matsuzaki and Jumpei Uchiyama are associate and assistant professors of microbiology and infection, respectively; Iyo Takemura-Uchiyama is a clinical medical technologist; and Masanori Daibata is a professor of microbiology and infection. They are all at Kochi University Medical School in Japan.







907   핵심 암 유전자의 마스터 조절자 발견  이성욱 2014/07/01 1487
906   동맥경화의 새로운 표적을 발견  이성욱 2014/06/26 1750
905   A 4-week hep C cure? Bristol to test drugs with Gilead's Sovaldi  이성욱 2014/06/25 1470
  Perspective: The age of the phage  이성욱 2014/06/21 1855
903   노인성 황반변성의 혈관 증식을 저해하는 오메가-3 지방산  이성욱 2014/06/20 1871
902   AbbVie all-oral hepatitis C therapy gets rapid EU review  이성욱 2014/06/18 1486
901   항체와 펩타이드로 구성된 펩티바디의 항암 효과  이성욱 2014/06/17 1789
900   AbbVie says hepatitis C regimen gets nod for FDA priority review  이성욱 2014/06/17 1494
899   간 재생의 새로운 모델  이성욱 2014/06/14 1750
898   낙타 젖에서 발견된 MERS 바이러스  이성욱 2014/06/14 2072
897   STAP 세포 관련 스캔들의 전말: 논문 기고에서 철회 결정까지  이성욱 2014/06/14 1867
896   남성 생식력에 부정적인 영향을 주는 핸드폰  이성욱 2014/06/14 1554
895   인간으로 진화이전에 이미 감염된 헤르페스  이성욱 2014/06/14 1896
894   BRCA 유전자 특허 무효판결 이후 1년: 거세져 가는 `암 유전자 데이터 공유`의 목소리  이성욱 2014/06/14 1974
893   암에서 마이크로RNA를 조절하는 새로운 초-보존 RNA 규명!  이성욱 2014/06/12 1581
892   야심찬 브레인 프로젝트  이성욱 2014/06/11 1680
891   간암 백신-어떻게 만들어야 효과적일까?  이성욱 2014/06/11 1704
890   Merck & Co to buy Idenix to boost hepatitis C drugs portfolio  이성욱 2014/06/11 1424
889   항생제 내성세균의 대안으로 부활하고 있는 박테리오파지 요법  이성욱 2014/06/06 2310
888   SARS 바이러스의 은폐 시스템을 무력화시키는 방법  이성욱 2014/06/06 1622

[이전 10개] [1]..[11][12][13][14][15][16][17][18] 19 [20]..[64] [다음 10개]
 

Copyright 1999-2021 Zeroboard / skin by ROBIN