분자유전학실험실 (단국대학교 분자생물학과)

 이성욱 ( 2011-10-28 23:40:46 , Hit : 2663
 Going Viral

October 2011 » Reading Frames
The promise of viruses as biotech tools will help molecular biology fulfill its true potential.

By William McEwan | October 1, 2011

Molecular biology has not achieved its potential. Why do people still die from cancer? Why are there so few effective antivirals? Where is the HIV/malaria/common cold vaccine? Why aren’t genetic diseases routinely treatable with gene therapy? Certainly we can point to plenty of successes—the papilloma virus vaccine made from recombinant pseudovirions and rapid diagnostics for many diseases are two examples—but even the optimists among us must concede that molecular biology is not where we might have hoped 25 years ago. What went wrong?

Simply put, life on the molecular scale is much more complicated than we imagined. Molecular biology roared onto the scene in the mid-20th century when James Watson and Francis Crick illuminated the “too beautiful not to be true” structure of DNA and the deciphering of the genetic code. But the simplicity and elegance ends right there. Biology at the protein level is far removed from the linear, digital code of nucleic acids. Biological organization at the cellular or organismal levels is even less linear. Understanding life on these scales is not impossible, but we have to work it out one interaction, mechanism, and pathway at a time. Making sense of the complexity will surely take the rest of this century (though I’d love to be wrong about that!). As each small piece of biology is understood, we gain something extra to work with, something tractable and, ultimately, engineerable.

The astonishing technological progress that has taken place over the last quarter century—low-cost sequencing, commonplace protein engineering, and gene synthesis, to name but a few—will precipitate a sea change in the research and development of molecular therapies. We will witness a shift from traditional small-molecule pharmacology towards engineered biological treatments. The first stages of the revolution are happening right now. For instance, many of the recent and upcoming anticancer drugs are custom-designed biological molecules. But there are still major limitations on the design and implementation of engineered protein-based therapies. Foremost of these is our inability to reliably deliver such proteins to the interior of cells—all the therapies that have made it to the market so far act extracellularly.

As a virologist, I may be biased, but I believe the greatest advances in molecular therapies in the near future will involve viruses. Compact biological entities with little more than a handful of genes and a protein coat, viruses lend themselves to engineering. That’s not to say they aren’t also complex: HIV envelope protein for instance is known to associate with 176 human proteins at the last count. But viruses know their hosts well—they can break into cells undetected, switch off alarm systems, and undermine the cell’s authority in deciding which genes get expressed. It is this acuity, acquired by trial and error over millions of years of coevolution with their hosts, that researchers are tapping to design novel therapies.

There is a certain swords-to-ploughshares pleasure in converting these murderous creatures into medicines. Twenty-five years ago, the discovery of HIV was three years old. Infection was untreatable and almost invariably fatal. Since then the virus has claimed 30 million lives and caused innumerable human tragedies. But in 2010, for the first time, WHO statistics reported a drop in the number of new infections, thanks in large part to the molecular inhibitors that constitute antiretroviral therapy. A quarter of a century from now, it seems within the realms of expectation that HIV and its ilk will be converted, by forced defections, into a new generation of therapies. Perhaps then we will be able to say that molecular biology has fulfilled its promise.

This month’s Reading Frames articles are penned by contributors to Future Science: Essays From the Cutting Edge, a compilation of writings from leading young scientists pushing the boundaries of their respective fields.

William McEwan is a molecular biologist at the MRC Laboratory of Molecular Biology, Cambridge, UK. He is interested in intracellular mechanisms that specifically disable viruses. His current research focuses on how cells use antibodies to recognize viruses and prevent infection. You can read an excerpt from McEwan’s essay as it appears in Future Science.

827   Vertex study will evaluate 12-week treatment period for some hepatitis C patients  이성욱 2011/10/25 2891
826   MicroRNAs Prevent Cell Reprogramming  이성욱 2011/10/27 3646
  Going Viral  이성욱 2011/10/28 2663
824   GlaxoSmithKline is first partner for new Alnylam platform  이성욱 2011/11/02 2583
823   Do Bacteria Age? Biologists Discover the Answer Follows Simple Economics  이성욱 2011/11/04 2440
822   Regular Aspirin Intake Halves Cancer Risk, Study Finds  이성욱 2011/11/04 2406
821   Gene Therapy Shows Promise as Hemophilia Treatment in Animal Studies  이성욱 2011/11/10 2489
820   How Blood Cells Thwart Malaria  이성욱 2011/11/13 3422
819   Pox Vaccine Treats Liver Cancer - Smallpox vaccine extends life in cancer trial-  이성욱 2011/11/13 2693
818   AASLD: African-Americans Face Hep C 'Triple Whammy'  이성욱 2011/11/17 2411
817   Uncovering a Key Player in Metastasis  이성욱 2011/11/21 2613
816   Finger (mal)formation reveals surprise function of desert DNA  이성욱 2011/11/28 2770
815   Stem-cell pioneer bows out  이성욱 2011/11/28 2487
814   Genetic variant linked to development of liver cancer in hepatitis C virus carriers  이성욱 2011/12/03 2666
813   Treatment for Blood Disease Is Gene Therapy Landmark  이성욱 2011/12/13 2032
812   Vertex begins joint studies on hepatitis C compounds  이성욱 2011/12/13 2672
811   Former Reginans changing the future of HIV  이성욱 2011/12/28 2313
810   The RNA roots of obesity?  이성욱 2012/01/03 2294
809   Alnylam Cuts One-Third of Workforce, To Save Cash for RNAi Clinical Plans  이성욱 2012/01/22 2488
808   Can DNA Self-replicate?  이성욱 2012/01/22 2494

[이전 10개] [1]..[21][22] 23 [24][25][26][27][28][29][30]..[64] [다음 10개]

Copyright 1999-2024 Zeroboard / skin by ROBIN