분자유전학실험실 (단국대학교 분자생물학과)



 이성욱 ( 2013-11-15 13:02:07 , Hit : 1874
 Un-junking junk DNA

PUBLIC RELEASE DATE:10-Nov-2013

[ Print | E-mail ] Share Share [ Close Window ]

Contact: Debra Kain
ddkain@ucsd.edu
619-543-6163
University of California - San Diego


A study led by researchers at the University of California, San Diego School of Medicine shines a new light on molecular tools our cells use to govern regulated gene expression. The study was published on line in advance of print November 10 in the journal Nature Structural and Molecular Biology.

"We uncovered a novel mechanism that allows proteins that direct pre-mRNA splicing – RNA-binding proteins – to induce a regulatory effect from greater distances than was thought possible," said first author Michael T. Lovci, of the Department of Cellular and Molecular Medicine, the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego.

Researchers from California, Oregon, Singapore and Brazil made this finding while working toward an understanding of the most basic signals that direct cell function. According to Lovci, the work broadens the scope that future studies on the topic must consider. More importantly, it expands potential targets of rationally designed therapies which could correct molecular defects through genetic material called antisense RNA oligonucleotides (ASOs).

"This study provides answers for a decade-old question in biology," explained principal investigator Gene Yeo, PhD, assistant professor of Cellular and Molecular Medicine, member of the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego, as well as with National University of Singapore. "When the sequence of the human genome was fully assembled, under a decade ago, we learned that less than 3 percent of the entire genome contains information that encodes for proteins. This posed a difficult problem for genome scientists – what is the other 97 percent doing?"

The role of the rest of the genome was largely a mystery and was thus referred to as "junk DNA." Since then sequencing of other, non-human, genomes has allowed scientists to delineate the sequences in the genome that are remarkably preserved across hundreds of millions of years of evolution. It is widely accepted that this evidence of evolutionary constraint implies that, even without coding for protein, certain segments of the genome are vital for life and development.

Using this evolutionary conservation as a benchmark, scientists have described varied ways cells use these non-protein-coding regions. For instance, some exist to serve as DNA docking sites for proteins which activate or repress RNA transcription. Others, which were the focus of this study, regulate alternative mRNA splicing.

Eukaryotic cells use alternative pre-mRNA splicing to generate protein diversity in development and in response to the environment. By selectively including or excluding regions of pre-mRNAs, cells make on average ten versions of each of the more than 20,000 genes in the genome. RNA-binding proteins are the class of proteins most closely linked to these decisions, but very little is known about how they actually perform their roles in cells.

"For most genes, protein-coding space is distributed in segments on the scale of islands in an ocean," Lovci said. "RNA processing machinery, including RNA-binding proteins, must pick out these small portions and accurately splice them together to make functional proteins. Our work shows that not only is the sequence space nearby these 'islands' important for gene regulation, but that evolutionarily conserved sequences very far away from these islands are important for coordinating splicing decisions."

Since this premise defies existing models for alternative splicing regulation, whereby regulation is enacted very close to protein-coding segments, the authors sought to define the mechanism by which long-range splicing regulation can occur. They identified RNA structures – RNA that is folded and base-paired upon itself – that exist between regulatory sites and far-away protein-coding "islands." Dubbing these types of interactions "RNA-bridges" for their capacity to link distant regulators to their targets, the authors show that this is likely a common and under-appreciated mechanism for regulation of alternative splicing.

These findings have foreseeable implications in the study of biomedicine, the researchers said, as the RNA-binding proteins on which they focused – RBFOX1 and RBFOX2 – show strong associations with neurodevelopmental disorders, such as autism and also certain cancers. Since these two proteins act upstream of a cascade of effects, understanding how they guide alternative splicing decisions may lead to advancements in targeted therapies which correct the inappropriate splicing decisions that underlie many diseases.


###

Additional contributors to the paper include Justin Arnold, Tiffany Y. Liang, Thomas J. Stark, Katlin B. Massirer and Gabriel A. Pratt, UC San Diego; Sherry Gee, Marilyn Parra, Dana Ghanem, Henry Marr and John G. Conboy, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley; Lauren T. Gehman and Douglas Black, UCLA Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, UCLA; Shawn Hoon, Nanyang Technological University, Singapore; and Joe W. Gray, Oregon Health and Science University.

Support was provided in part by the National Institutes of Health, (U54 HG007005, R01 HG004659, R01 GM084317 and R01 NS075449,HL045182,DK094699,CA112970, CA126551 and DK032094); and by the Director, Office of Science, and Office of Biological & Environmental Research of the US Department of Energy.





--------------------------------------------------------------------------------
[ Back to EurekAlert! ] [ Print | E-mail Share Share ] [ Close Window ]

  

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.




HOME   DISCLAIMER   PRIVACY POLICY   TERMS & CONDITIONS   CONTACT US   TOP
Copyright ©2013 by AAAS, the science society.








  Un-junking junk DNA  이성욱 2013/11/15 1874
786   간염 발병시 면역계가 간 손상을 유발하는 기전  이성욱 2013/11/12 2062
785   젊음의 샘 유전자가 성체의 조직 손상을 치유  이성욱 2013/11/11 1944
784   CRISPR Madness  이성욱 2013/11/10 2204
783   RNA Controls Splicing During Gene Expression, Further Evidence of 'RNA World' Origin in Modern Life  이성욱 2013/11/07 2351
782   Experimental Hepatitis C Drug Shows Promise for Preventing Recurrence in Liver Transplant Patients  이성욱 2013/11/06 2169
781   Scientists revolutionize the creation of genetically altered mice to model human disease  이성욱 2013/10/30 2577
780   유방암 발병 위험을 둘러싼 뜨거운 논란: BRCA vs BROCA  이성욱 2013/10/30 2375
779   거세 저항성 전립선 종양을 증식시키는 논코딩  이성욱 2013/08/23 2708
778   First Interferon-Free HCV Regimen Gets Unanimously Positive Vote  이성욱 2013/10/28 2273
777   암 전이와 싸우는 작은 조각의 유전 물질-마이크로 알앤에이  이성욱 2013/10/21 2218
776   감염위험을 증가시키는 HIV 백신  이성욱 2013/10/21 2229
775   형광성 항생제를 이용한 감염지점 파악방법  이성욱 2013/10/17 2110
774   대한민국 간암·간경화 원인은 70%가 B형, 15%가 C형 간염  이성욱 2013/10/14 2853
773   암 게놈 아틀라스 프로젝트- 치명적인 뇌종양의 비밀을 밝히다!!  이성욱 2013/10/14 2289
772   이제 미리 초기 간암 전구세포 확인  이성욱 2013/10/14 2349
771   포유류의 선천성 항 바이러스 파워 발견  이성욱 2013/10/14 2272
770   J&J's Janssen Buys Rights to Hepatitis C Compound from GSK  이성욱 2013/10/11 2155
769   제약업계 새 먹거리 ‘바이오베터’…미래 시장 두고 바이오시밀러와 한판  이성욱 2013/10/09 2872
768    3 Win Joint Nobel Prize in Medicine  이성욱 2013/10/08 2325

[이전 10개] [1]..[21][22][23][24] 25 [26][27][28][29][30]..[64] [다음 10개]
 

Copyright 1999-2023 Zeroboard / skin by ROBIN