분자유전학실험실 (단국대학교 분자생물학과)



 이성욱 ( 2013-04-02 19:06:03 , Hit : 2604
 'RNA sponge' mechanism may cause ALS/FTD neurodegeneration

Public release date: 1-Apr-2013
[ Print | E-mail |  Share ] [ Close Window ]

Contact: Quinn Eastman
qeastma@emory.edu
404-727-7829
Emory Health Sciences


The most common genetic cause of both ALS (amyotrophic lateral sclerosis) and FTD (frontotemporal dementia) was recently identified as an alteration in the gene C9orf72. But how the mutation causes neurodegenerative disease appeared mysterious.

Researchers at Emory University School of Medicine have demonstrated that this ALS/FTD mutation may be harmful because it creates an "RNA sponge," soaking up an important regulatory protein that binds RNA.

The results were published online Monday in the Proceedings of the National Academy of Sciences, Early Edition.

"We think that the RNA itself is part of the disease mechanism," says co-author Thomas Wingo, MD, assistant professor of neurology at Emory University School of Medicine. "In both cell culture and fruit flies, we've been able to show that we can add back the protein depleted by the RNA and ameliorate the problem."

The finding provides insight into the mechanism of disease in ALS and FTD, both in cases where C9orf72 is altered and in other cases. It suggests some forms of ALS/FTD may have common elements with other neurodegenerative disorders caused by noncoding repeats, such as myotonic dystrophy, spinocerebellar ataxia and fragile X-associated tremor/ataxia syndrome.

The senior author is Peng Jin, PhD, professor of human genetics at Emory University School of Medicine. The first authors are a former graduate student, Zihui Xu, PhD, now at Huazhong University of Science and Technology in China, and research specialist Mickael Poidevin.

ALS is a fatal disease in which motor neurons in the brain and spinal cord degenerate. As the illness progresses, patients lose the ability to walk, talk and breathe. FTD is a form of dementia in which the patients primarily experience deterioration in behavior, personality or language.

Many neurologists and researchers consider these conditions as sharing clinical and pathological features. Mutations in several genes have been linked to both ALS and FTD, which suggests that they have a common mechanism. However, most cases are considered sporadic, meaning that they don't have a clear family history.

In 2011, a mutation was identified within C9orf72 as the most common genetic cause of ALS and FTD, accounting for 5 to 7 percent of cases of each disease. The mutation doesn't seem to affect the protein encoded by C9orf72. Instead, it expands a block of repetitive DNA, so that the sequence "GGGGCC" is repeated hundreds of times outside the parts of the gene that encode protein.

This looks similar to "noncoding repeat" expansions responsible for other neurodegenerative disorders such as myotonic dystrophy, spinocerebellar ataxia and fragile X-associated tremor/ataxia syndrome.

Some researchers have reported that the GGGGCC repeat produces RNA that is translated into an unusual protein that aggregates in cells. These protein aggregates are thought to be toxic to neurons. Emory researchers have an alternative explanation: the GGGGCC repeat RNA itself is toxic.

The Emory team tested the effects of producing the GGGGCC repeat RNA, which proved toxic to cultured mammalian neuronal cells and caused neurodegeneration in fruit flies. When the repeat RNA was produced in flies' motor neurons, the flies had reduced motor activity.

The repeat RNA appears to be harmful because, when overproduced, it sequesters a protein called Pur alpha, which sticks to the GGGGCC repeats. Scientists had previously found that Pur alpha is necessary for neuronal development and is involved in the transport of RNA within neurons. Making neuronal cells or flies produce more Pur alpha to compensate reverses the toxicity caused by the RNA, the Emory scientists found.

"For ALS and FTD, this suggests a disease-fighting strategy of targeting either the toxic RNA itself or its interaction with Pur alpha," Jin says. "It also hints that there is a common RNA-based mechanism contributing to several neurodegenerative diseases."

Sequestering Pur alpha appears to cause its redistribution within the neurons of patients affected by ALS/FTD. The Emory team was able to detect clumpy "inclusions" containing Pur alpha in samples of brain tissue from individuals with C9orf72 mutations – and also in other individuals with FTD but without C9orf72 mutations.


###

The research was supported by the National Institute for Neurological Disorders and Stroke (R01 NS051630 and R21NS067461) and the Atlanta Veterans Administration Medical Center.

Reference:

Z. Xu, M. Poidevin, X. Li, Y. Li, L. Shu, D.L. Nelson, H. Li, M. Gearing, T.S. Wingo and P. Jin. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes





--------------------------------------------------------------------------------
[ Print | E-mail |  Share ] [ Close Window ]








727   임자 있는 초원들쥐가 외간들쥐를 거들떠보지도 않는 이유: 후성유전학  이성욱 2013/06/05 3279
726   면역시스템이 유익세균과 평화로운 공존을 유지하는 방법  이성욱 2013/05/28 2492
725   TNF를 이용한 안전한 항종양 치료법  이성욱 2013/05/28 2656
724   Viruses in the gut protect from infection  이성욱 2013/05/22 2907
723   황우석을 넘어서: 미국의 과학자들, 체세포복제 기술로 인간 배아줄기세포 제조 성공  이성욱 2013/05/17 2462
722   Janssen's experimental drug for hepatitis C gets FDA fast track  이성욱 2013/05/15 2827
721   세상을 바꿀 10가지 기술  이성욱 2013/05/13 2330
720   Most Europeans share recent ancestors  이성욱 2013/05/10 2156
719   약물 저항성 세균을 파괴하는 방법  이성욱 2013/05/10 2552
718   분자생물학의 거성(巨星) 떨어지다; 프랑수아 자콥의 삶과 업적  이성욱 2013/05/09 2832
717   FDA fast tracks AbbVie hepatitis C drug  이성욱 2013/05/08 2196
716   Targeted drugs to tackle hepatitis C  이성욱 2013/05/06 1798
715   DNA: Celebrate the unknowns  이성욱 2013/04/26 1971
714   Hepatitis C drug nears approval  이성욱 2013/04/24 2121
713   텔로머레이즈를 표적으로 삼는 새로운 항암 요법  이성욱 2013/04/24 3107
712   A pathogenic picornavirus acquires an envelope by hijacking cellular membranes  이성욱 2013/04/23 3003
711   BMS, Santaris Make Potentially $100M+ mRNA-Targeting Deal  이성욱 2013/04/17 2148
710   Scientists Map Elusive 3-D Structure of Telomerase Enzyme, Key Actor in Cancer, Aging  이성욱 2013/04/17 2305
709   Gilead seeks FDA OK for game-changing hepatitis C drug  이성욱 2013/04/10 2114
  'RNA sponge' mechanism may cause ALS/FTD neurodegeneration  이성욱 2013/04/02 2604

[이전 10개] [1]..[21][22][23][24][25][26][27] 28 [29][30]..[64] [다음 10개]
 

Copyright 1999-2021 Zeroboard / skin by ROBIN