분자유전학실험실 (단국대학교 분자생물학과)



 이성욱 ( 2016-04-22 05:37:16 , Hit : 841
 CRISPR Aids Identification of Sporadic Parkinson’s Mutation in GWAS


GEN News Highlights
More »
Apr 21, 2016

The overwhelming majority of Parkinson’s disease (PD) and Alzheimer’s disease cases that occur are sporadic—caused by a complex mix of environmental and shared genetic factors. These types of interactions are notoriously difficult for scientists to study, which is why most research has focused on familial cases that have much clearer genetic origins.

Now, investigators at the Whitehead Institute have determined how a noncoding mutation identified in genome-wide association studies (GWAS) can contribute to sporadic PD. The researchers are hopeful that their novel approach will be helpful in analyzing future GWAS results for other sporadic diseases with genetic causes, such as Alzheimer’s, multiple sclerosis, diabetes, and cancer.  

"This is really the first time we've gone from risk variants highlighted by GWAS to a mechanistic and molecular understanding—right down to the nucleotide—of how a mutation can contribute to the risk of developing disease," explained senior study author Rudolf Jaenisch, M.D., Whitehead Institute founding member and professor of biology at MIT.

Scientists often view GWAS as a treasure trove of genomic information marking the general locations of mutations that could be risk factors for a given condition. Yet, GWAS do not reveal the precise locations of potentially pathogenic mutations, nor do they indicate how a particular locus on a genomic map contributes, if at all, to a disease. For instance, in sporadic PD, multiple GWAS have pointed to the α-synuclein gene (SNCA) as one of the strongest risk loci in patients' genomes. However, the GWAS contain little information regarding the mechanism of how this gene is dysregulated in sporadic PD patients.

To determine if distant gene regulatory elements on the same chromosome carrying SNCA affected cellular levels of α-synuclein, the Whitehead team investigated two GWAS-flagged risk variants located in a putative SNCA enhancer.

The researchers then used the CRISPR/Cas9 genome editing system to modify the mutations into isogenic human pluripotent stem cells. By altering the genetic variant on only one chromosome, the other chromosome remains unchanged and acts as an internal control. This method allows the scientists to measure very subtle effects with very high confidence while eliminating the effect of any genetic or epigenetic modifications and cell culture related variations that could occur during the experiment.

“Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells,” the authors wrote. “By generating a genetically precisely controlled experimental system, we identify a common Parkinson’s disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson’s disease.”

The findings from this study were published recently in Nature in an article entitled "Parkinson-Associated Risk Variant in Distal Enhancer of α-Synuclein Modulates Target Gene Expression."

"Our method addresses an essential shortcoming of GWAS—using the correlations produced by GWAS, you cannot distinguish the effect between two variants that are very close together in the genome," noted lead study author Frank Soldner, M.D., senior research scientist in Dr. Jaenisch’s laboratory. "Such physical proximity means that they will always co-segregate during inheritance, which is why we had to do what we did—modify and analyze each variant independently while keeping the rest of the genome completely constant."

Once the Whitehead team differentiated the stem cells into neurons, they took careful note of the changes in SNCA expression. While one of the mutations had no effect, the other, which switches one nucleotide from an A to a G, slightly but significantly, boosts SNCA production. When compared to the enhanced SCNA production in the familial form of the disease, the modest effect created by the A-to-G mutation would be sufficient over a lifetime to increase the risk of PD, the researcher postulated.

To see how the mutation affects α-synuclein production, the researchers identified two transcription factors that bind to the enhancer carrying this mutation. When the enhancer was not mutated, the transcription factors bind to it normally and suppress SNCA production. If the enhancer had the G mutation, the transcription factors were unable to bind to the enhancer, and SNCA production is activated.

The research team was excited by their findings and looking to apply their novel technique used to pinpoint additional pathogenic genes for sporadic PD and sift through the GWAS hits for other diseases.







1127   Mysterious Eukaryote Missing Mitochondria  이성욱 2016/05/17 851
1126   Genetically Engineered Pigs May Fly as Cancer Models  이성욱 2016/05/17 922
1125   Blame Daddy for Some Epigenetically Induced Birth Defects in Children  이성욱 2016/05/17 930
1124   RNA 세상: 태초에 RNA의 퓨린은 어떻게 생성되었나?  이성욱 2016/05/13 1398
1123   Three studies show that the virus can cause birth defects in mouse embryos.  이성욱 2016/05/13 1580
1122   ‘로렌조 오일’ 유전자 치료로 효과  이성욱 2016/05/09 848
1121   First Data from Anti-Aging Gene Therapy  이성욱 2016/04/28 866
1120   정밀의학의 끝: 개인화된 종양백신을 개발하는 과학자들  이성욱 2016/04/26 1058
  CRISPR Aids Identification of Sporadic Parkinson’s Mutation in GWAS  이성욱 2016/04/22 841
1118   바이오통신원 [바이오토픽] 이제는 염기편집 시대, Cas9를 변형하여 DNA 한 글자만 바꾼다.  이성욱 2016/04/21 1168
1117   Hitting HIV with CRISPR/Cas9 Can Arouse Resistance  이성욱 2016/04/10 865
1116   GSK Gets Positive CHMP Opinion For Strimvelis To Treat Rare Disease ADA-SCID  이성욱 2016/04/02 1033
1115   CRISPR Can Tag RNA  이성욱 2016/03/26 799
1114   미니멀세포(minimal cell)를 만든 크레이그 벤터  이성욱 2016/03/26 954
1113   Minimal Genome Created  이성욱 2016/03/26 831
1112   Using Gene Editing to Delete HIV from Human T Cells  이성욱 2016/03/23 774
1111   RNA May Surpass DNA in Precision Medicine  이성욱 2016/03/23 819
1110   Zika Update  이성욱 2016/03/15 754
1109   CRISPR/Cas9을 이용하여 PRRS 바이러스에 감염되지 않는 돼지를 개발하다  이성욱 2016/03/14 1203
1108   유전자 가위, 매머드 복원-안전한 백신의 시대 리본 자르다  이성욱 2016/03/14 987

[1][2][3][4][5][6][7] 8 [9][10]..[64] [다음 10개]
 

Copyright 1999-2021 Zeroboard / skin by ROBIN